Genome Sequencing Reveals Loci under Artificial Selection that Underlie Disease Phenotypes in the Laboratory Rat

نویسندگان

  • Santosh S. Atanur
  • Ana Garcia Diaz
  • Klio Maratou
  • Allison Sarkis
  • Maxime Rotival
  • Laurence Game
  • Michael R. Tschannen
  • Pamela J. Kaisaki
  • Georg W. Otto
  • Man Chun John Ma
  • Thomas M. Keane
  • Oliver Hummel
  • Kathrin Saar
  • Wei Chen
  • Victor Guryev
  • Kathirvel Gopalakrishnan
  • Michael R. Garrett
  • Bina Joe
  • Lorena Citterio
  • Giuseppe Bianchi
  • Martin McBride
  • Anna Dominiczak
  • David J. Adams
  • Tadao Serikawa
  • Paul Flicek
  • Edwin Cuppen
  • Norbert Hubner
  • Enrico Petretto
  • Dominique Gauguier
  • Anne Kwitek
  • Howard Jacob
  • Timothy J. Aitman
چکیده

Large numbers of inbred laboratory rat strains have been developed for a range of complex disease phenotypes. To gain insights into the evolutionary pressures underlying selection for these phenotypes, we sequenced the genomes of 27 rat strains, including 11 models of hypertension, diabetes, and insulin resistance, along with their respective control strains. Altogether, we identified more than 13 million single-nucleotide variants, indels, and structural variants across these rat strains. Analysis of strain-specific selective sweeps and gene clusters implicated genes and pathways involved in cation transport, angiotensin production, and regulators of oxidative stress in the development of cardiovascular disease phenotypes in rats. Many of the rat loci that we identified overlap with previously mapped loci for related traits in humans, indicating the presence of shared pathways underlying these phenotypes in rats and humans. These data represent a step change in resources available for evolutionary analysis of complex traits in disease models.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Pattern of Linkage Disequilibrium in Livestock Genome

Linkage disequilibrium (LD) is bases of genomic selection, genomic marker imputation, marker assisted selection (MAS), quantitative trait loci (QTL) mapping, parentage testing and whole genome association studies. The Particular alleles at closed loci have a tendency to be co-inherited. In linked loci this pattern leads to association between alleles in population which is known as LD. Two metr...

متن کامل

Whole-Genome Sequencing Reveals Genetic Variation in the Asian House Rat

Whole-genome sequencing of wild-derived rat species can provide novel genomic resources, which may help decipher the genetics underlying complex phenotypes. As a notorious pest, reservoir of human pathogens, and colonizer, the Asian house rat, Rattus tanezumi, is successfully adapted to its habitat. However, little is known regarding genetic variation in this species. In this study, we identifi...

متن کامل

Unveiling the genetic loci for a panicle developmental trait using genome-wide association study in rice

Panicle size has a high correlation with grain yield in rice. There is a bottleneck to identify the additional quantitative trait loci (QTL) for panicle size due to the conventional traits used for QTL mapping. To identify more genetic loci for panicle size, a panicle developmental trait (LNTB, the length from panicle neck-knot to the first primary branch in the rachis) related to panicle size ...

متن کامل

Genome-Wide Association Study of Seedling Characteristics in Bread Wheat Cultivars Under Normal and Salt Stress Conditions

In order to identify loci controlling seedling morpho-physiologic characteristics in 88 bread wheat cultivars, a greenhouse experiment based on simple alpha lattice was conducted under both normal and 120 mM (12 ds/m) salt stress condition of the Faculty of Agriculture, Urmia University in 2020-2021 cropping season. Chlorophyll a, b and carotenoid content, proline, plant fresh and dry weight, p...

متن کامل

DNA Polymorphisms at Candidate Gene Loci and Their Relation with Milk Production Traits in Murrah Buffalo (Bubalus bubalis)

DNA polymorphism within diacylglycerol transferase 2 (DGAT2) / monoacyl glycerol transferases 2 (MOGAT2), leptin and butyrophilin genes were analysed using PCR-SSCP in Murrah buffalo. The single strand conformation polymorphism (SSCP) analysis of amplified gene fragment in exon 5 of MOGAT2, exon 3 of leptin and intron 1 of butyrophilin gene revealed different patterns. A, B and C showed the fol...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 154  شماره 

صفحات  -

تاریخ انتشار 2013